Digression: Relationship between average values and marginal values

Abbreviations:
Q = Quantity
AC = Average cost
$A R=A v e r a g e ~ r e v e n u e$
TC = Total cost
TR = Total revenue
MC = Marginal cost = (TC)'
MR = Marginal revenue (= TR)'

1 Average cost and marginal cost

- Statement: If marginal cost is higher than average cost, average cost increases.
- \quad Steps to get from average cost to marginal cost:
(1) Total cost = Average cost * quantity
(2) (Total cost)'
- Example:
$A C=20 Q$
(1) $\mathrm{TC}=20 \mathrm{Q}^{*} \mathrm{Q}=20 \mathrm{Q}^{2}$
(2) $M C=(T C)^{\prime}=40 Q$

- The above statement is confirmed.

Question:

Does this statement ($\mathrm{MC}>\mathrm{AC} \rightarrow \mathrm{AC}$ increases) also apply to non-linear average cost, e.g. $A C=Q^{2}$? What are the two steps?
(1) $T C=A C^{*} Q=Q^{2 *} Q=Q^{3}$
(2) $(T C)^{\prime}=M C=3^{*} Q^{2}$
$\rightarrow \quad$ The MC-curve $\left(3^{*} Q^{2}\right)$ is above the rising AC-curve $\left(Q^{2}\right)$.
The statement is also confirmed in this case.

2 Average revenue and marginal revenue

- Statement: If marginal revenue is lower than average revenue, average revenue falls.
- \quad Steps to get from average revenue to marginal revenue:
(1) Total revenue = Average revenue * quantity
(2) (Total revenue)'
- Example:
$A R=200-10 Q$
(1) $T R=200 Q-10 Q^{2}$
(2) $M R=(T R)^{\prime}=200-20 Q$

- The above mentioned statement is confirmed.

